skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barker, Warren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BackgroundSemantic intrusion errors (SIEs) are associated with mild cognitive impairment (MCI) due to Alzheimer's disease (AD). It is unknown whether accounting for maximum learning capacity still leads to an increase in SIEs when elevated plasma p-tau217, a biological indicator of underlying AD, is present. MethodsOne hundred fifty-eight older adult participants completed the Loewenstein-Acevedo Scales for Semantic Interference and Learning (LASSI-L), a sensitive cognitive challenge test designed to elicit SIEs. Of these, 108 were clinically diagnosed with amnestic MCI (aMCI). Fifty-eight individuals met or exceeded a plasma p-tau217positivity of >0.55 pg/ml, while 50 individuals scored below this threshold. ResultsAfter adjusting for demographic covariates and maximum learning capacity, the aMCI p-tau217+ group evidenced more SIEs compared to aMCI p-tau217- on the first (list B1;p= 0.035) and second trials of the competing list (list B2;p= 0.006). Biological predictors such asApoEε4 status, higher p-tau217, and older age were predictors of an elevated number of SIEs [list B2:F(3,104) = 10.92;p= 0.001;R= 0.489)]. ConclusionsUnlike previous studies that used amyloid PET or other plasma biomarkers, individuals with aMCI p-tau217+ evidenced more SIEs, even after adjusting for their initial learning capacity, a covariate that has not been studied previously. These findings support that SIEs are more prevalent in the presence of underlying AD pathology and occur independent of learning deficits. 
    more » « less
    Free, publicly-accessible full text available July 22, 2026
  2. Neuroimaging and biofluid biomarkers provide a proxy of pathological changes for Alzheimer’s disease (AD) and are useful in improving diagnosis and assessing disease progression. However, it is not clear how race/ethnicity and different prevalence of AD risks impact biomarker levels. In this narrative review, we survey studies focusing on comparing biomarker differences between non-Hispanic White American(s) (NHW), African American(s) (AA), Hispanic/Latino American(s) (HLA), and Asian American(s) with normal cognition, mild cognitive impairment, and dementia. We found no strong evidence of racial and ethnic differences in imaging biomarkers after controlling for cognitive status and cardiovascular risks. For biofluid biomarkers, in AA, higher levels of plasma Aβ42/Aβ40, and lower levels of CSF total tau and p-tau 181, were observed after controlling for APOE status and comorbidities compared to NHW. Examining the impact of AD risks and comorbidities on biomarkers and their contributions to racial/ethnic differences in cognitive impairment are critical to interpreting biomarkers, understanding their generalizability, and eliminating racial/ethnic health disparities. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Objective: The interaction of ethnicity, progression of cognitive impairment, and neuroimaging biomarkers of Alzheimer’s Disease remains unclear. We investigated the stability in cognitive status classification (cognitively normal [CN] and mild cognitive impairment [MCI]) of 209 participants (124 Hispanics/Latinos and 85 European Americans). Methods: Biomarkers (structural MRI and amyloid PET scans) were compared between Hispanic/Latino and European American individuals who presented a change in cognitive diagnosis during the second or third follow-up and those who remained stable over time. Results: There were no significant differences in biomarkers between ethnic groups in any of the diagnostic categories. The frequency of CN and MCI participants who were progressors (progressed to a more severe cognitive diagnosis at follow-up) and non-progressors (either stable through follow-ups or unstable [progressed but later reverted to a diagnosis of CN]) did not significantly differ across ethnic groups. Progressors had greater atrophy in the hippocampus (HP) and entorhinal cortex (ERC) at baseline compared to unstable non-progressors (reverters) for both ethnic groups, and more significant ERC atrophy was observed among progressors of the Hispanic/Latino group. For European Americans diagnosed with MCI, there were 60% more progressors than reverters (reverted from MCI to CN), while among Hispanics/Latinos with MCI, there were 7% more reverters than progressors. Binomial logistic regressions predicting progression, including brain biomarkers, MMSE, and ethnicity, demonstrated that only MMSE was a predictor for CN participants at baseline. However, for MCI participants at baseline, HP atrophy, ERC atrophy, and MMSE predicted progression. 
    more » « less
  4. Cross-cultural differences in the association between neuropsychiatric symptoms and Alzheimer's disease (AD) biomarkers are not well understood. This study aimed to (1) compare depressive symptoms and frequency of reported apathy across diagnostic groups of participants with normal cognition (CN), mild cognitive impairment (MCI), and dementia, as well as ethnic groups of Hispanic Americans (HA) and European Americans (EA); (2) evaluate the relationship between depression and apathy with A beta deposition and brain atrophy. Statistical analyses included ANCOVAs, chi-squared, nonparametric tests, correlations, and logistic regressions. Higher scores on the Geriatric Depression Scale (GDS-15) were reported in the MCI and dementia cohorts, while older age corresponded with lower GDS-15 scores. The frequency of apathy differed across diagnoses within each ethnicity, but not when comparing ethnic groups. Reduced volume in the rostral anterior cingulate cortex (ACC) significantly correlated with and predicted apathy for the total sample after applying false discovery rate corrections (FDR), controlling for covariates. The EA group separately demonstrated a significant negative relationship between apathy and superior frontal volume, while for HA, there was a relationship between rostral ACC volume and apathy. Apathy corresponded with higher A beta levels for the total sample and for the CN and HA groups. 
    more » « less
  5. Abstract We examined the association between bilingualism, executive function (EF), and brain volume in older monolinguals and bilinguals who spoke English, Spanish, or both, and were cognitively normal (CN) or diagnosed with Mild Cognitive Impairment (MCI) or dementia. Gray matter volume (GMV) was higher in language and EF brain regions among bilinguals, but no differences were found in memory regions. Neuropsychological performance did not vary across language groups over time; however, bilinguals exhibited reduced Stroop interference and lower scores on Digit Span Backwards and category fluency. Higher scores on Digit Span Backwards were associated with a younger age of English acquisition, and a greater degree of balanced bilingualism was associated with lower scores in category fluency. The initial age of cognitive decline did not differ between language groups. The influence of bilingualism appears to be reflected in increased GMV in language and EF regions, and to a lesser degree, in EF. 
    more » « less
  6. Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since birth. Thus, it conveys poorly recent or contemporaneous aging trends, which can be better quantified by the (temporal) pace P of brain aging. Many approaches to map P, however, rely on quantifying DNA methylation in whole-blood cells, which the blood–brain barrier separates from neural brain cells. We introduce a three-dimensional convolutional neural network (3D-CNN) to estimate P noninvasively from longitudinal MRI. Our longitudinal model (LM) is trained on MRIs from 2,055 CN adults, validated in 1,304 CN adults, and further applied to an independent cohort of 104 CN adults and 140 patients with Alzheimer’s disease (AD). In its test set, the LM computes P with a mean absolute error (MAE) of 0.16 y (7% mean error). This significantly outperforms the most accurate cross-sectional model, whose MAE of 1.85 y has 83% error. By synergizing the LM with an interpretable CNN saliency approach, we map anatomic variations in regional brain aging rates that differ according to sex, decade of life, and neurocognitive status. LM estimates of P are significantly associated with changes in cognitive functioning across domains. This underscores the LM’s ability to estimate P in a way that captures the relationship between neuroanatomic and neurocognitive aging. This research complements existing strategies for AD risk assessment that estimate individuals’ rates of adverse cognitive change with age. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026